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Potential-energy-landscape-based extended van der Waals equation

T. Keyes and J. Chowdhary
Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA

~Received 2 July 2003; published 29 April 2004!

The inherent structures~IS! are the local minima of the 3N-dimensional potential energy surface, or land-
scape, of anN-atom system. Stillinger has given an exact IS formulation of thermodynamics. Here the impli-
cations for the equation of state are investigated. It is shown that the van der Waals~vdW! equation, with
density-dependenta andb coefficients, holds if the averaged IS energy is close to its high-temperature plateau
value. The density-dependence alone significantly enriches the equation of state. Furthermore, an additional
‘‘landscape’’ contribution to the pressure is found at lowerT. The resulting extended vdW equation is capable
of yielding a waterlike density anomaly, flat isotherms in the coexistence region vs vdW loops, and several
other desirable features. The plateau IS energy, the width of the distribution of IS, andTTOL , the ‘‘top of the
landscape’’ temperature at which the plateau is reached, are simulated over a broad reduced density range,
2.0>r>0.20, in the Lennard-Jones fluid. Fits to the data yield an explicit equation of state, which is argued to
be plausible at high density. Nevertheless,a(rc) andb(rc), whererc is the critical density, are in excellent
agreement with the standard values obtained by fitting the vdW equation at the critical point.

DOI: 10.1103/PhysRevE.69.041104 PACS number~s!: 05.20.Jj, 64.10.1h, 65.40.Gr
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I. INTRODUCTION

Classical thermodynamics and dynamics are ultima
governed by the potential energy,U(r), wherer represents
the 3N coordinates of anN-atom system. The potential ma
be @1# regarded as a surface, orlandscape, the potential-
energy landscape~PEL!, defined over the 3N-dimensional
configuration space available for a given constant volum
The canonical partition function is determined by the co
figurational integral of the Boltzmann factor over the spa

Stillinger and Weber@1# proposed a PEL-based approa
to this long standing theoretical challenge. The space is
titioned into the basins of attraction of the local minim
named@1# inherent structures~IS!, with energyU IS . The
integral becomes a sum over basins of intrabasin integ
which determine the ‘‘vibrational free energy,’’Av ; its aver-
age, for basins in aU IS band, isAv(U IS ,T,V). Knowledge of
the distribution in energy of distinguishable IS then allo
@1,3,2# a further transformation to an integral over the
energies, evaluation of which yields the Helmholtz free e
ergy,A(T,V), and thence all of thermodynamics. Of cours
obtainingAv and the distribution of IS is challenging, an
detailed implementation of the IS formalizm is in its infanc

Intensive quantities are defined@1,3# as f5U IS /N and
av5Av /N. The IS distribution isV(f)5C exp„Ns(f)…,
whereC has dimensions of inverse energy, and, identify
the logarithm of the integrand of the partition function wi
2A(U IS ,T,V)/kBT,

A~Nf,T,V!/N5f1av~f,T,V!2kBTs~f,V!. ~1!

Contributions from the momentum integrals are incorpora
into av . With the plausible, but not unique@4#, attitude that
the meaningful configurational states in liquids are the
with multiplicity determined by s, the configurational
entropy/particle obeys Sc(Nf,V)/N5kBs(f,V)
[sc(f,V). In the limit of largeN the IS energy which mini-
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mizes A, the thermodynamic average,f(T,V), is over-
whelmingly dominant. The thermodynamicA is obtained by
replacingf with f(T,V).

The equation of state@3,5# is determined by the relation
P52(]A/]V)T51r2

„](A/N)/]r…T , wherer is the num-
ber density; we will use density instead of volume in t
following. Givenf(T,r), s(f,r), andav(f,T,r), one can
simply evaluate Eq.~1! and differentiate. For additional in
sight, note that the density derivative acts both on the exp
r dependence ofs andav , and on that implicit inf(T,r).
Using the extremal condition, (]A/]f)50 when f
5f(T,r), it may be seen that the implicit contributions su
to zero, and

P5r2F S ]av

]r D „f~T,r!,T,r…2kBTS ]s

]r D ~f~T,r!,T,r!G ,
~2!

including the explicitr-dependence only.
Little is currently known about the fundamental PE

functions. A Gaussian approximation,

s~f,r!5a2@f2f0~r!#2/2d2~r!, ~3!

wheref0 is the band center andd2 is the standard deviation
squared/atom, is reasonable for fluids if one believes@6–9#
that the IS are built up from weakly interacting local region
The total number of distinguishable IS is@1# }exp(aN), de-
fining the parametera.

A harmonic approximation toav—that is, to the intraba-
sin configurational integral—is natural at higher densiti
and could be quite good at lowT,

av~f,T,r!5
kBT

N K (
i 51

3N

ln~b\v i !L ~f!

5kBTF3 ln~b\v0!1
1

N K (
i 51

3N

ln~v i /v0!L ~f!G ,

~4!
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wherev i is the i th normal mode frequency at the IS,v0 is
the frequency unit, and the averages are over represent
IS with energyf. Sastry@10# found that the frequency sum
has a linearf dependence,

1

N K (
i 51

3N

ln~v i /v0!L ~f![ f 5 f 0~r!1 f 1~r!f, ~5!

for some liquid states of the Lennard-Jones~LJ! mixture.
La Naveet al. @5# reached the same conclusion for OT

and obtained and tested the Gaussian linear harmonic~de-
noted GLH! equation of state. With these approximations

f~T,r!5@f0~r!2 f 1~r!d2~r!#2
d2~r!

kBT
. ~6!

The pressure has the form@5#

P~T,r!5TPT~r!1Pconst~r!1T21P1/T~r!, ~7!

where

PT52r2
]

]r
„sc,`2kB~ f 01 f 1f`!…, ~8!

Pconst5r2~]f` /]r!, ~9!

P1/T52r2
]

]r S d2

2kB
D . ~10!

The high-T plateau of the IS energy isf`5f02 f 1d2, and,
correspondingly,sc,`5kBs(f` ,r).

The @5# ‘‘potential-energy-landscape equation of state
evaluated via computer simulation, was shown to accura
reproduce the true pressure for a range of liquid-stater and
T in OTP. Here we attempt to reach some more general c
clusions. We identify the origin of the van der Waals~vdW!
equation in the IS formalism, and obtain expressions
density-dependenta andb coefficients. The vdW-like terms
are PT and Pconst. However, an additional contribution
which we call the ‘‘landscape pressure,’’ does not have
vdW analog; in the GLH approximation it is simplyP1/T .

Combining everything gives an extended van der Wa
equation with the possibility of yielding a waterlike densi
anomaly ~already pointed out by Sciortino@11#!, flat iso-
therms in the coexistence region, as opposed to vdW loop
positive derivative (]U/]r)T at high density, and a critica
anomaly inCV . In the GLH approximation our theory ma
be characterized as further interpretation of Eq.~7!, but we
also attempt to go beyond GLH, and we determine relev
PEL quantities by computer simulations on the sing
component LJ fluid for a wide range of densities includi
the coexistence region. Fits to the data at high density, wh
the harmonic approximation is most apt, lead to an anal
equation of state. Perhaps surprisingly, the resultinga(rc)
and b(rc), whererc is the critical density, are in excellen
agreement with the usual values obtained by fitting the v
equation to the critical point.
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II. THE EXTENDED VAN DER WAALS EQUATION
OF STATE

In the vdW equation the pressure,

P~T,r!5
kBTr

12br
2ar2, ~11!

is the sum of aT-independent term and a linear term. Herea
andb are the well-known coefficients expressing the red
tion of P from the ideal gas value by the attractive forces a
the increase due to repulsions, respectively.

1. The Gaussian linear harmonic approximation

Identification of the attractive and repulsive/ideal gas co
tributions withPconst andPT is obvious, and holds up upo
further consideration. The standard expression isa
52„](U/N)/]r…T , whereU is the total potential energy. In
the GLH approximation,U(T,r)5U IS(T,r)1 3

2 NkBT and
„](U/N)/]r…T5(]f/]r) . In general the derivative is
T-dependent but the plateau value, (]f` /]r) , is a function
of density only and allows identification of an explic
T-independent contribution toP. Thus@Eq. ~9!# we propose a
density-dependent extended vdWa coefficient,

Pconst52a~r!r2, ~12!

a~r!52S ]f`

]r D , ~13!

and the less familiar IS energy is related to a textbook
rameter.

The vdW repulsive/ideal gas pressure is conventiona
derived from the entropy. The total entropy/particle is t
sum of the configurational and vibrational contributions,s
5sc1sv , and sv5(ev2av)/T where ev is the vibrational
energy/particle. In the harmonic approximationev53kBT,
so Eqs.~4! and ~5! give sv5kB@32 f (f(T,r)#. The deriva-
tive in Eq. ~8! is indeed that of the total plateau entrop
which contributes a term linear inT to the free energy, and
thence toP, that is,TPT . We propose

PT52r2
]

]r
~s`![

rkB

12rb~r!
, ~14!

with a density-dependentb coefficient. Note that the densit
dependence ofav occurs via2Tsv ; the nontrivial aspect of
the harmonic vibrational free energy is the harmonic vib
tional entropy.

Equation~14! does not look terribly transparent. For clar
fication consider that, if

s`5kBlnS g
12rb

r D , ~15!

whereg is ar-independent constant, the vdWPT is obtained
so long asr2(]b/]r)!1, which obviously holds at low den
sity. Equation~15! is plausible, with entropy/particle prop
erly varying as ln(1/r) at low density and vanishing a
‘‘close packing’’ is approached,r→1/b. Specifically, s`
4-2
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vanishes atr5(b11/g)21. However, real molecules with
soft cores retain positive entropy as they are compresse
very high density, so any vanishing must be understood a
extrapolation from a particular density range. We anticip
thatb(r) defined in Eq.~14! will decrease at highr, keeping
the entropy positive and the pressure finite. This expecta
will be explicitly realized in Sec. IV.

There is considerable interest@12–15# in the variation of
the parametera, which determines the total number of IS
with density and from substance to substance.If the r de-
pendence ofa @enteringsc,` via s(f`)] dominates that of
s` , then Eqs.~14! and ~15! give

a' lnS g
12rb

r D . ~16!

This is consistent with Stillinger’s@15# conclusion thata(r)
has a logarithmic divergence asr approaches zero, thus pro
viding some support for our assumption abouta(r). On the
other hand, Stillinger has also@14# observed thata is inde-
pendent ofr for systems with inverse-power law repulsio
only, and at high density repulsive forces dominate eve
attractions are present. Equation~16! is not expected to hold
at high density.

To summarize so far, the free energy evaluated on
high-T plateau of the PEL yields an equation of state w
more complicated density dependence than the vdW e
tion, but the sameT dependence. The extended vdW equ
tion also takes into account the deviation off(T) from its
plateau value, measured bydf(T,r)[f`(r)2f(T,r). In
the GLH approximation, wheredf(T)5d2/kBT, the result-
ing landscape pressure is2r2@](d2/2kBT)/]r#; the entire
deviation ofA from its plateau value is proportional todf.
Adding the landscape pressure yields the extended v
equation in the GLH approximation,

P~T,r!5
kBTr

12b~r!r
2a~r!r22r2

]

]r S d2

2kBTD . ~17!

2. Beyond the GLH approximation

Simulation shows that the GLH expression forf(T) is
only a crude representation; what is the source of the er
The Gaussian approximation, taken literally, has no uppe
lower bound on possible IS energies, but is a good repre
tation for the contributing fluidlike states over a substan
range ofT andr, and has@6,7,9# some theoretical justifica
tion. More physically, the energy below whichSc is negative
may be considered@6,7# a lower cutoff.

The harmonic approximation is valid for a particular no
mal coordinate when the system remains close to the IS.
suggests high density, where in fact the harmonicf(T) is
better, and deterioration asr is decreased towards the coe
istence region. Increasing anharmonicity with decreas
density may be seen directly via the increase of the num
of imaginary frequency instantaneous normal modes@16#,
which are completely anharmonic vibrational coordinat
Their number is proportional@16–19# to the self-diffusion
coefficientD.
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Thus we aim to retain a Gaussian density of states, bu
abandon the linear harmonic approximation forav . Deriving
specific expressions forav is a current focus of our researc
but we will now try to draw some general conclusions.

As a first step consider the form

av~f,T,r!5@ev
0~r!1ev

1~r!f#2T@sv
0~r!1sv

1~r!f#

1g~T only!. ~18!

Note thatev andsv are defined in terms of density-depende
quantities that contribute to the pressure. Equation~18! is
hardly the most general possibility but it does include line
f dependence and arbitraryr dependence of both the vibra
tional energy and entropy, while the linear harmonic appro
mation hasf- and r-dependent entropies only@discussion
surrounding Eq.~14!#. Of course, a function ofT ~which
includes a constant! only in av does not influenceP or f(T).
With the Gaussian density of states, Eq.~18! constitutes the
Gaussian linear~GL! approximation.

Calculations in the GL approximation are straightforwa
The IS energy is

f~T!5S f01
sv

1d2

kB
D 2

~11ev
1!d2

kBT
; ~19!

vibrational entropy influences the plateau IS energy, vib
tional energy influences theT dependence. TheT dependence
of P is unchanged from the GLH approximation and

Pconst5r2
]

]r
„ev

01~11ev
1!f`…5r2

]e`

]r
, ~20!

PT52r2
]

]r
~sc,`1sv

01sv
1f`!52r2

]s`

]r
, ~21!

P1/T52r2
]

]r S ~11ev
1!2d2

2kB
D . ~22!

The corresponding GL extended vdW equation is

P~T,r!5
kBTr

12b~r!r
2a~r!r22r2

]

]r S ~11ev
1!2d2

2kBT D .

~23!

Equation ~14! still holds for b, but, defining the total
energy/particlee5f1ev ,

a~r!52
]

]r
„~11ev

1!f`1ev
0
…52

]e`

]r
. ~24!

With the introduction of a nontrivial vibrational free energ
a is expressed in terms of the total plateau energy, just as
total plateau entropy was previously seen to determineb.
Along with the parameter definitions, the entire equation
state may be rewritten using only quantities which are w
defined with no reference to the GL approximation,
4-3
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P~T,r!5
kBTr

12b~r!r
2a~r!r2

2r2
]

]r S de~T,r!2
kBTdf2~T,r!

2d2 D , ~25!

wherede5df1dev .
Equation~25! is easily verified with Eqs.~18! and ~19!,

and will be motivated shortly. It rests upon a particu
choice of av but suggests greater generality. And, a mo
general treatment of anharmonicity is necessary to disc
densities and temperatures wheref(T) is not described by
Eq. ~19!. In the GLH and GL approximations there is n
characteristic temperature at which the plateau is reac
df(T) vanishes smoothly as 1/T. Simulation, however,
shows@10# a characteristic@20# ‘‘top of the landscape’’ tem-
perature,TTOL , at typical liquid densities, and only the fina
approach to the plateau atT*TTOL obeys a 1/T law. Near
the critical density, the 1/T regime is nonexistent, or ver
small.

We take the point of view that a complex, anharmonicav
is reflected in the behavior off(T,r). Determination of
f(T,r) by simulation is much easier than a comprehens
theory ofav . Thus, in light of Eq.~25!, we seek an equation
of state with vdW-likePconst and PT terms determined by
the exact plateau energy and entropy, and a landscape
sure, of arbitraryT dependence, determined by the drop fro
the plateau. The drop is expressed throughdev anddsv , as
well asdf, but we further postulate that their most intere
ing behavior arises from their dependence ondf.

It is necessary to characterize the plateau more caref
The vibrational free energy is a function of bothf and T.
The character of the relevant basins, on average, is d
mined by f; given the basins, the calculation ofav—the
basin-constrained configurational integral—is fullyT depen-
dent. A plateau free energy, then, must be defined in term
the high-temperature limit for plateau-type basins. The fi
step is to establish the existence of a well-defined free en
asT→`.

For a given basin

av~T!5
kBT

N F3N ln„L~T!…2 lnS E d$r%e2bDU($r%) D G ,
~26!

whereDU5U2U IS andL is the thermal de Broglie wave
length, expressing the role of the kinetic energy. SinceL
}T21/2, ln@L(T)# does not reach a high-T plateau value but,
since it is independent of density, it does not contribute to
pressure.

Escape from a basin occurs along ‘‘reaction pathwa
which lead to transition states. On the other hand, the po
tial keeps increasing as the system moves away from th
in a nonreactive direction. Taking the high-T limit of the
configurational integral is complicated by the possibility
finding very largeDU. The most important anharmonicity o
the basins is, very simply, their finite extent. We suggest t
the principal features ofav at highT may be determined by
04110
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dividing the coordinates into 3N2Nu approximately har-
monic coordinates andNu (u for unstable! reaction path-
ways. The energy remains finite for the latter, andbDU
→0 asT→`. Characterizing thei th reaction pathway for
plateau IS with extent, i and energye i , which will be some-
what less than the barrier height, and expanding the Bo
mann factor, the high-T limit for one basin is

av~T→`!5
kBT

N F ~3N2Nu!ln~b\v0!1Nuln„L~T!/,0…

1 (
i 51

3N2Nu

ln~v i /v0!~f`!

2(
i 51

Nu

lnS , i

,0
~12be i ! D G , ~27!

where,0 is the length unit, and we have used Eq.~4! for the
3N2Nu harmonic coordinates. The terms on the first line a
@Eq. ~18!# g(T), the part ofav that does not contribute to th
pressure.

Expanding ln(12bei) and decomposing the remainder
Eq. ~27! into the formev2Tsv ,

ev,`5
1

N (
i 51

Nu

e i53S Nu

3ND ē, ~28!

sv,`5
kB

N F(
i 51

Nu

ln~, i /,0!2 (
i 51

3N2Nu

ln~v i /v0!~f`!G ,

~29!

where in Eq.~28! we indicate that the nontrivial plateau v
brational energy is determined by the plateau fraction of
action coordinates,Nu/3N times an averaged barrier heigh
We anticipate that fraction of reaction coordinates is clos
related to the high-T limit of the @16# fraction of imaginary-
frequency instantaneous normal modes, offering the pros
of combining INM and IS thermodynamics. The vibration
entropy has the harmonic part already discussed for the
monic coordinates, and a new contribution from the react
coordinates.

While further development of these ideas may lead
detailed expressions forav , the key point for now is that
both ev and sv reach well defined high-temperature platea
values. The temperature requirements are both thatT
.TTOL , so f'f` ~which is all that ‘‘plateau’’ meant pre-
viously!, and thatkBT is greater than all the barrier height
to make the high-T expansion in the configurational integr
over the reaction coordinates. It would be pleasing ifTTOL
sufficed for both conditions, but that remains to be seen.

Accordingly, we rewrite the free energy,

A~T,r!/N5g~T!1@f`1ev,`2T„kBs~f`!1sv,`…#

2@df~T!1dev~T!2kBTdf2~T!/2d2#

1T@dsv~T!1kB~f02f`!df~T,r!/d2#,

~30!
4-4
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suppressing ther dependence on the right-hand side; eve
thing exceptg(T) andkB is density dependent. Equation~30!
has three distinct groups of terms, enclosed by square br
ets. The first group is the plateau free energy, with cons
and linearT dependence, which yieldsPconst and PT in the
GLH and GL approximations. Now that we have establish
the existence of the plateau quite generally, we assert tha
exact, true plateau free energy yields a contribution to
equation of state of formPconst1TPT , given by Eqs.~20!
and ~21!. Considering the plateau only, the equation of st
is a vdW equation with density-dependent coefficients, giv
by Eqs.~14! and ~24!.

The second group contains the effect of the drop oe
5f1ev from the plateau, plus thedf2 term in @f0
2f(T)#25@(f02f`)1df(T)#2 which arises in evaluat
ing the configurational entropy contribution
2kBTs„f(T)…; it yields the landscape pressureP1/T in the
GLH and GL approximations. The current derivation sho
that the group may be identified without any approximatio
yielding whateverT dependence is given by the truedf and
dev . The proposed Eq.~25! is seen to correctly reproduc
the first two groups in Eq.~30!. Thus our aim of including
anharmonic, complexav through easily simulated quantitie
is realized.

The third group consists of the drop ofsv from the plateau
plus the cross term in„(f02f`)1df(T)…2, and vanishes in
the GLH and GL approximations. This conclusion hol
even if the GL coefficients are madeT dependent,ev

i (T) and
sv

i (T),i 51,2. It seems interesting that part of the drop in t
configurational entropy exactly cancels the drop in the vib
tional entropy, considerably simplifying the equation of sta

We have no argument that the third group should van
in general. Our most complete equation of state, subject o
to the arguments about the existence of the plateau, is

P~T,r!5
kBTr

12b~r!r
2a~r!r2

2r2
]

]r S de~T,r!2
kBTdf2~T,r!

2d2 D
1Tr2

]

]r
@dsv~T,r!1kB~f02f`!df~T,r!/d2#.

~31!

Nonetheless, we propose Eq.~25! as a tractable approxima
tion. The essence of the extended vdW equation is an e
treatment of the plateau free energy, plus the landscape p
sure resulting from the drop from the plateau. Equation~25!
incorporates these features, and allows an arbitraryT depen-
dence for the drop. The GLH and GL approximations
df(T) can be quite poor, so it is important to incorporate t
true df(T). Even if the contribution of group three is non
zero, it will not change the qualitative behavior of the lan
scape pressure too much, ifdsv resemblesdf.

While finding the most comprehensive equation of stat
the ultimate goal, the GLH is not to be scorned. At hi
density the harmonic approximation makes good sense
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been verified@4,5,10# in simulation for several systems an
conditions.

III. SOME GENERAL PROPERTIES OF THE EXTENDED
VAN DER WAALS EQUATION

On the plateau the pressure is described by the vdW-
P5TPT1Pconst, with density-dependenta and b coeffi-
cients. In the Angell classification of liquids on a stron
fragile scale@20–23#, the more complex behavior of fragil
liquids is associated with a more pronounced dropdf(T)
from the plateau. Thus incorporatinga(r) and b(r), and
ignoring the landscape pressure, may be a good approx
tion for strong liquids. We further suggest that the ordina
vdW equation should be most useful for strong liquids.

1. Isotherms

Perhaps the most-discussed features of the vdW equa
are the loops in the isotherms below the critical temperat
Tc . They are a consequence of treating the fluid as homo
neous in the coexistence region. There is no provision for
phase separation which yields the true, flat isotherms.

There are two simple scenarios for crossing the liquid-
coexistence curve,Tlg(r), from above in the (r,T) plane:
the system may phase separate in thermal equilibrium, w
flat isotherms, or it may remain a metastable, homogene
fluid, with loops. Intermediate cases with incomplete pha
separation are also possible. Similarly, above the triple p
density, cooling below the melting temperature may lead
liquid-solid phase separation or a metastable supercooled
uid. One cannot assume that equilibrium is maintained
simulation or in the laboratory.

At a given density, there will exist IS representative of
the possible thermodynamic states. Under the coexiste
curve, there will be both homogeneous fluid and pha
separated liquid-gas and gas-solid IS. Above the triple po
density the IS types will be homogeneous liquid, liquid-so
phase separated, and crystal with varying amounts of di
der. Due to surface effects, phase-separated IS may be
cult to observe, and/or modified in character, in finiteN
simulation. A PEL-based calculation in a metastable stat
achieved by including only the IS to which the system
restricted, while equilibrium results from keeping all the I

Phase separation causes a large drop inf(T), i.e., a
strong increase indf(T). On the other hand,df(T) varies
more gently when the system remains homogeneous. T
the landscape pressure in Eq.~25! behaves quite differently
for the two scenarios. We suggest that, consequently, the
tended vdW equation can give either loops or flat isother
as appropriate for the degree of equilibration. Specifica
the landscape pressure is negligible for a homogeneous fl
reproducing the vdW equation witha(r) and b(r), and
loops. However, it is large if phase separation occurs,
contributes ‘‘antiloops’’ which cancel or partially cancel th
vdW loops,leading to flat or flatter isotherms, for complete
or partial equilibration, respectively.

To demonstrate this idea, assume thatdev is either negli-
gible or has the same qualitative behavior asdf in Eq. ~25!
4-5
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~recall de5df1dev). Let phase separation at a givenr,
and the corresponding strong growth indf(T), begin at
Tlg(r). For T,Tc , the distance to the coexistence curv
@Tlg(r)2T#, is an increasing function ofr for r,rc and a
decreasing function forr.rc ; the density derivative
changes from positive to negative atrc . If df(T) is a mono-
tonic function of @Tlg(r)2T#, its derivative@]df(T)/]r#
will have the same behavior. Then the landscape pressu
Eq. ~25! will be negative belowrc and positive above, i.e.
the antiloop.

As an illustration only, consider the simple ansa
df(T,r)5c@Tlg(r)2T#2, with Tlg estimated from the ordi-
nary vdW equation. We user independenta54 andb51
for an approximate description of the LJ fluid and igno
dev . All quantities are expressed in natural LJ units. T
landscape pressure is nonzero within the vdW coexiste
curve only, so we assume it does not change the critical p
from Tc51.185, rc50.333. Figure 1 shows vdW and ex
tended vdW isotherms atT51.170 for the choicesc51.91,
d251. We do not claim to have the correctdf(T) but the
point is that any model in which its growth begins at t
coexistence curve will yield an antiloop and potentially a fl
isotherm. On the other hand, if the fluid remains in a me
stable homogeneous phase,df has no relation to@Tlg(r)
2T#, there are no antiloops, and the vdW loops remain.

2. Some thermodynamic derivatives

There is considerable current interest in the phenome
of a positive (]r/]T)P , the ‘‘density anomaly’’ well known
in water, which may or may not be associated@24# with the
existence of multiple critical points. Some textbook manip
lations show that equivalent conditions are (]S/]r)T.0 or
(]P/]T)r,0.

It is immediately apparent that the vdW equation can
have a density anomaly, since

~]P/]T!r5
kBr

12br
.0 ~van der Waals!. ~32!

However,@11# adding the landscape pressure in the GL
proximation,

FIG. 1. Ordinary and extended vdW pressure vs density
(Tc2T)50.015, a54, b51 (rc51/3); all quantities in LJ units.
Outside the coexistence region the two pressures are identica
side the flatter curve is the extended vdW equation with the ill
trative form ofdf(T,r) from the text.
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~]P/]T!r5
kBr

12b~r!r
1r2

]

]r S ~11ev
1!2d2

2kBT2 D ~33!

and thus, if the density derivative is negative and la
enough, there will be an anomaly. A more complicated c
dition can be expressed with the truedf(T) via Eq. ~25!.

There exists a clear physical interpretation of why t
extended vdW equation can have a density anomaly. O
expects that entropy should decrease with increasing den
as the system becomes more congested and/or ordered
this is only true on the high-T plateau whereS is a maxi-
mum. In the GL approximation, the deviation off(T) from
the plateau at constantT is proportional tod2. If d2 de-
creases with increasing density, the system gets closer to
maximum plateau entropy, which may compensate for
decrease inS` itself, leading to (]S/]r)T.0.

For the vdW equation the energy decreases with incre
ing density; the relation„](U/N)/]r…T5T(]P/]T)r2P
yields „](U/N)/]r…T52a, corresponding to the negativ
energy of attraction. This is because repulsions enter via
entropy only, i.e., there is no true positive repulsive ene
contribution to the pressure, no matter how high the dens
The situation is different in the extended vdW equatio
however. Simulation ~Sec. IV! shows that (]f` /]r)
changes sign from negative to positive near the triple po
yielding a negativea(r) and a positive contribution to
„](U/N)/]r…T at high density, barring some unexpected co
trary behavior byev,` . Then, the ‘‘vdW attractive’’ term
transforms into a repulsive pressure. Taking the landsc
pressure into account, the GL approximation is

„]~U/N!/]r…T52a~r!2
]

]r S ~11ev
1!2d2

kBT D , ~34!

and the landscape term also changes from positive to n
tive near the triple point.

The critical behavior of the heat capacity is described@25#
by the exponentsa @different froma in Eq. ~3!# anda8,

~]U/]T!rc
}~T2Tc!

2a,T.Tc

}~Tc2T!2a8, T,Tc .

In the vdW approximation@25#, a5a850. Since we are
obtaining P from the free energy the simplest consiste
route toU is also throughA; statistical mechanics yields th
exact relation

„U~T!/N…5f~T!2T2S ]„av~T,f!/T…

]T D
f(T)

, ~35!

where the derivative acts on the explicitT dependence of
av /T only, not on that which enters implicitly throughf(T).
For an equation of state based upon a particular approxi
tion to av , use of that approximation, and the resultin
f(T), in Eq. ~35! yields the corresponding potential energ
Since the vdW equation is obtained by ignoring the dev
tions of f, ev , and sv from their plateau values, strongT
dependence ofU(T), and even the mild harmonic 1/T be-
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havior, is discarded. That is whya5a850; the critical
anomaly is in the anharmonic landscape term.

IV. APPLICATION TO THE LENNARD-JONES LIQUID

Here we present some preliminary results on LJ. A care
prior study of phase equilibria@26# determined that the criti-
cal point and triple point arerc50.31, Tc51.31, andr t
50.84, Tt50.75, LJ units. An estimate ofTTOL(r), deter-
mined fromf(T), N5256, is shown in Fig. 2, along with
the coexistence curve from Ref.@26#. A minimum is found
near the triple point density, and with decreasing den
TTOL(r) runs below the coexistence curve, touching it at
critical point. Note that the phase diagram in our system m
differ slightly from that of Ref. @26#, as they usedN
51372, so quantitative comparisons should not be
tempted.

Earlier we discussed the liquid-gas coexistence temp
tureTlg as marking the onset of a rapid rise indf(T); Tlg is
a ‘‘TOL’’ temperature forequilibrium states. In a finite-size
simulation the metastable homogeneous phase can su
until the spinodal is reached. We do not claim to have
equilibrated simulation and our result,TTOL<Tlg , is ex-
pected. What may be interesting is that the liquid-gas sp
odal and theTOL temperature discussed in supercooled l
uids, found at densities above the minimum, are th
connected. Leyvraz and Klein@28# have suggested that prop
erties of supercooled liquids may be influenced by a sp
odal.

We have obtainedd2(r) and f`(r) ~Fig. 3! for 2.0>r
>0.20,N5500, from the distribution of IS visited at highT,
whered2 becomesT independent, and fromf(T), respec-
tively. Starting at low density both quantities, likeTTOL ,
decrease to minimum values near the triple point, and t
begin to rise; the coefficienta(r) changes sign from positive
to negative. Similar behavior has been observed@2,27# for
the IS pressure.

The higher the density the better we expect the harmo
approximation to perform. Thus we are going to use our d
to evaluate the GLH equation of state over the entire av
able density range, but we do not make any claims of va
ity at low to intermediate density. Bothd2(r) andf`(r) are
well represented by a sum of two exponentials, particula
at high density, 2.0>r>1.2. Taking density derivative

FIG. 2. SimulatedTTOL(r) data~connected line segments! and
coexistence curve from Ref.@26#, LJ units.
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yields Pconst „a(r)…) and the landscape pressureP1/T .
We do not at the moment have the information necess

to calculateb(r) from first principles. This coefficient in-
volves an extrapolation, i.e., in some small density rang
appears that the pressure would diverge at a particular, hi
‘‘close packed’’ density, but since the cores are soft that d
sity is never reached. Consequentlyb may appear to be con
stant at low density, but itsr-dependence becomes essen
at high density.

It is difficult to equilibrate the system atr.1.2 without
going to quite highT. To get some idea of the behavior ofb
we have calculated theT525 isotherm, and thenceb(r)
from the GLH Equation~17!. The results are shown in Fig. 4
Because of the soft cores, the quantity„12b(r)r… can be-
come small, but never zero. Thus we suggest a plaus
behavior is exponential decay withr, giving

b~r!5~12e2b0r!/r, ~36!

and the smooth curve in Fig. 4 is Eq.~36! with b051.31.
Combining everything,

P~T,r!5Tre1.31r1r2~9.15e1.95r213.7e1.48r!

2
r2

T
~0.00841e4.96r217.7e23.09r!, ~37!

anticipating that the analog of the vdW attractive term w
be positive, and the landscape term negative, at high den

FIG. 3. Plateau energyf` ~lower!, shifted up by five energy
units, and squared Gaussian widthd2 vs reduced density, all in LJ
units.

FIG. 4. High densityb coefficient from simulation and fit to Eq
~36!, b051.31. Noteb(rc50.31)51.08.
4-7
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Matching the@26# true rc andTc of LJ to the vdW equa-
tion givesb51.07 anda54.73. At the critical density we
find a(0.31)54.92 @negative of first parenthesis in Eq.~37!#
and @Eq. ~36!# b(r)51.08. Again, we expect the missin
anharmonicity to be important at the critical density and
gard these results with some skepticism, but the agreeme
remarkable. The density dependence ofa, along with b, is
shown forr<0.90 in Fig. 5; note the sign change near t
triple point density.

V. DISCUSSION

The equation of state is obtained from the density deri
tive of the Helmholtz free energy. The PEL approach p
vides a less traditional way to view the problem and gene
approximations. Since a Gaussian approximation for the
energy distribution is reasonable, the focus is on the vib
tional free energyav . The GLH approximation was worke
out @5# by La Naveet al., and the starting point of this pape
is simply the observation that their result resembles the
der Waals equation with density-dependenta and b coeffi-
cients, and an extra ‘‘landscape’’ term.

Recently Shellet al. @29# and Speedy@30# have exploited

FIG. 5. a ~upper! andb coefficients vs density.
,
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the simplicity of the soft-sphere system, with@14# density-
independent total number of IS~parametera), by combining
it with a vdW-like mean-field attraction, and a harmonicav .
The resulting PEL equation of state thus has the samT
dependence as the GLH and GL approximations, but w
more explicit density dependence; thea coefficient ~inter-
preting their results with the perspective of this paper! is r
independent by construction. Various desirable properties
demonstrated but, despite the presence of a vdW attrac
their focus is different from that presented herein.

In addition to the GLH and GL calculations, we have trie
to include anharmonicity with as few assumptions aboutav
as is possible; in Eq.~25!, anharmonicity is implicit in the
T-dependent inherent structure energy, and in the plateau
ergy and entropy. The extended equation can reproduce,
provide PEL interpretations of, thermodynamic phenome
absent from the usual vdW equation. If the system ph
separates in thermal equilibrium below the coexisten
curve, the landscape pressure will have vdW antiloops, fu
or partially canceling the vdW loops.

Computer simulation in the LJ fluid yields the quantiti
TTOL(r),f`(r), andd2(r); they all have minima near the
triple point. The a(r) coefficient becomes negative atr
*1.0, as the vdW attractive pressure turns repulsive. T
b(r) coefficient is represented by a simple expression st
ming from the idea that the pressure may become expon
tially large, but not infinite. Since the harmonic approxim
tion is best suited for high density, the resulting analy
GLH expression is suggested as a high density equatio
state. Nevertheless, when evaluated at the critical den
a(rc) andb(rc) are remarkably close to the accepted valu
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