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Potential-energy-landscape-based extended van der Waals equation
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The inherent structure@S) are the local minima of the8-dimensional potential energy surface, or land-
scape, of arlN-atom system. Stillinger has given an exact IS formulation of thermodynamics. Here the impli-
cations for the equation of state are investigated. It is shown that the van der 8@als equation, with
density-dependerat andb coefficients, holds if the averaged IS energy is close to its high-temperature plateau
value. The density-dependence alone significantly enriches the equation of state. Furthermore, an additional
“landscape” contribution to the pressure is found at loweiThe resulting extended vdW equation is capable
of yielding a waterlike density anomaly, flat isotherms in the coexistence region vs vdW loops, and several
other desirable features. The plateau IS energy, the width of the distribution of 19;;gnd the “top of the
landscape” temperature at which the plateau is reached, are simulated over a broad reduced density range,
2.0=p=0.20, in the Lennard-Jones fluid. Fits to the data yield an explicit equation of state, which is argued to
be plausible at high density. Nevertheleagp.) andb(p.), wherep, is the critical density, are in excellent
agreement with the standard values obtained by fitting the vdW equation at the critical point.
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[. INTRODUCTION mizes A, the thermodynamic average(T,V), is over-
whelmingly dominant. The thermodynamicis obtained by
Classical thermodynamics and dynamics are ultimatelyeplacinge with ¢(T,V).
governed by the potential energy(r), wherer represents The equation of stat8,5] is determined by the relation,
the 3N coordinates of alN-atom system. The potential may P=—(JA/dV)r=+p®(9(A/N)/dp)r, wherep is the num-
energy landscapéPEL), defined over the R-dimensional ~ following. Given&(T,p), o(¢,p), anda,(4,T,p), one can

configuration space available for a given constant volumeSiMPly evaluate Eq(1) and differentiate. For additional in-

The canonical partition function is determined by the con-SI9Nt note that the density derivative acts both on the explicit
figurational integral of the Boltzmann factor over the spaceﬁ o!epentﬂence (t)’fr an?av, ag.? on gha/talmp_llcé)lt |n¢h(T,p).
Stillinger and Webef1] proposed a PEL-based approach sing the extremal condition, 9f/d¢)=0 when ¢

to this long standing theoretical challenge. The space is par- ¢(T,p), it may be seen that the implicit contributions sum

titioned into the basins of attraction of the local minima, to zero, and
named[1] inherent structureglS), with energyU,s. The da, Jo
integral becomes a sum over basins of intrabasin integrals, P=p? ﬂp) ¢(T,P),T,P)—kBT(%)(¢(T,P),T,P) :

which determine the “vibrational free energyy,, ; its aver-

age, for basins in &, band, isA,(Us,T,V). Knowledge of

the distribution in energy of distinguishable IS then allowsincluding the explicitp-dependence only.

[1,3,2 a further transformation to an integral over the IS Little is currently known about the fundamental PEL

energies, evaluation of which yields the Helmholtz free enfunctions. A Gaussian approximation,

ergy,A(T,V), and thence all of thermodynamics. Of course,

obtaining A, and the distribution of IS is challenging, and o($.p)=a=[ = do(p)1*126%(p), &)

detailed implementation of the IS formalizm is in its infancy. Whereq')o is the band center ar@z is the standard deviation
Intensive quantities are defingd,3] as ¢=Us/N and  squared/atom, is reasonable for fluids if one beligéesd]

a,=A,/N. The IS distribution isQ)(¢)=Cexp(No(¢#)),  that the IS are built up from weakly interacting local regions.

whereC has dimensions of inverse energy, and, identifyingThe total number of distinguishable 1S[i] «=exp(@N), de-

the logarithm of the integrand of the partition function with fining the parametes.

—A(Us,T,V)/KkgT, A harmonic approximation ta,—that is, to the intraba-

sin configurational integral—is natural at higher densities,

AN, T,V)IN=¢+a,(4,T,V)—kgTa(¢,V). (1) andcould be quite good at low,

@

3N
B
Contributions from the momentum integrals are incorporated@,(¢.T.p) = =5~ <241 |n(ﬁﬁwi)> (¢)
into a, . With the plausible, but not uniqud], attitude that

the meaningful configurational states in liquids are the IS, 1 /3N
with multiplicity determined by o, the configurational =kBT{3 In(Bhwy) + N<2 |n(wi/wo)>(¢)}
entropy/particle obeys S:(N¢,V)IN=kgo(¢,V) =1
=5s.(¢,V). In the limit of largeN the IS energy which mini- 4
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where w; is theith normal mode frequency at the 18, is Il. THE EXTENDED VAN DER WAALS EQUATION
the frequency unit, and the averages are over representative OF STATE
IS with energy¢. Sastry[10] found that the frequency sum

has a lineaip dependence, In the vdW equation the pressure,

kgT

L N P(T.p)= Top — 2, (11

Nl 2 n@ifeg) | (H=1=1p)+f(p)g, (&) P

is the sum of a-independent term and a linear term. Hare

for some liquid states of the Lennard-Joried) mixture. andb are the well-known coefficients expressing the reduc-
La Naveet al.[5] reached the same conclusion for OTP, tion of P from the ideal gas value by the attractive forces and

and obtained and tested the Gaussian linear harmdieic  the increase due to repulsions, respectively.

noted GLH equation of state. With these approximations,
1. The Gaussian linear harmonic approximation

5%(p) Identification of the attractive and repulsive/ideal gas con-

— 1 2

¢(T.p)=[bo(p)=1(p)5°(p)] kgT ° ® tributions with P, ,s; @and Pt is obvious, and holds up upon
further consideration. The standard expression as

The pressure has the forff] =—(d(UIN)/dp)t, whereU is the total potential energy. In
the GLH approximationU(T,p)=Us(T,p)+ 3NkgT and

P(T,p)=TP1(p)+Pcons(p) + T *P1(p), (M (3(UIN)/dp)r=(dpldp). In general the derivative is

T-dependent but the plateau valueg(./dp), is a function

where of density only and allows identification of an explicit
5 T-independent contribution . Thus[Eq. (9)] we propose a
P= _Pzg(sc,w_ks(f()*‘ f1.,)), ®) density-dependent extended vd\toefficient,
Pcons= — a(P)sz (12
Pconstzpz(ﬁqsoo/ap)a 9) ad
a(p)=—|—|, 13
P za(éz) (10 v ﬁp) -
wr= b dp\2kg/’ and the less familiar IS energy is related to a textbook pa-
_ _ Lo rameter.
The highT plateau of the IS energy i$..= ¢o— 6%, and, The vdW repulsive/ideal gas pressure is conventionally
correspondinglys. .= kg (- ,p). derived from the entropy. The total entropy/particle is the

The [5] “potential-energy-landscape equation of state,” sum of the configurational and vibrational contributioss,
evaluated via computer simulation, was shown to accurately g+ s,, ands,=(e,—a,)/T wheree, is the vibrational
reproduce the true pressure for a range of liquid-staéd  energy/particle. In the harmonic approximatiep=3kgT,
Tin OTP. Here we attempt to reach some more general consg Egs.(4) and (5) give s,=kg[3—f(#(T,p)]. The deriva-
clusions. We identify the origin of the van der Wa&@slW)  tive in Eq. (8) is indeed that of the total plateau entropy,

equation in the IS formalism, and obtain expressions fokyhich contributes a term linear ifi to the free energy, and
density-dependerd andb coefficients. The vdW-like terms  thence toP, that is, TPy. We propose

are Pt and P.,,s;- However, an additional contribution,

which we call the “landscape pressure,” does not have a d pKg

vdW analog; in the GLH approximation it is simpR; . Pr=—p %(Sw)zm: (14)
Combining everything gives an extended van der Waals

equation with the possibility of yielding a waterlike density with a density-dependeit coefficient. Note that the density

anomaly (already pointed out by Sciortinpll]), flat iso-  dependence dd, occurs via—Ts, ; the nontrivial aspect of

therms in the coexistence region, as opposed to vdW loops,the harmonic vibrational free energy is the harmonic vibra-

positive derivative §U/dp)+ at high density, and a critical tional entropy.

anomaly inCy,. In the GLH approximation our theory may  Equation(14) does not look terribly transparent. For clari-

be characterized as further interpretation of Ef), but we  fication consider that, if

also attempt to go beyond GLH, and we determine relevant

PEL quantities by computer simulations on the single-

component LJ fluid for a wide range of densities including sm:kBln( Y

the coexistence region. Fits to the data at high density, where

the harmonic approximation is most apt, lead to an analytievherevy is ap-independent constant, the vd®{ is obtained

equation of state. Perhaps surprisingly, the resulég.) so long agp?(db/dp) <1, which obviously holds at low den-

andb(p.), wherep, is the critical density, are in excellent sity. Equation(15) is plausible, with entropy/particle prop-

agreement with the usual values obtained by fitting the vdWerly varying as In(14) at low density and vanishing as

equation to the critical point. “close packing” is approachedp—1/b. Specifically, s,

1—pb)’ 15
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vanishes ap=(b+1/y) 1. However, real molecules with Thus we aim to retain a Gaussian density of states, but to
soft cores retain positive entropy as they are compressed @bandon the linear harmonic approximationdgr. Deriving
very high density, so any vanishing must be understood as apecific expressions fa, is a current focus of our research
extrapolation from a particular density range. We anticipatebut we will now try to draw some general conclusions.

thatb(p) defined in Eq(14) will decrease at higlp, keeping As a first step consider the form

the entropy positive and the pressure finite. This expectation

will be explicitly realized in Sec. IV. a,(¢,T,p)=[€%p)+e(p)p]—T[s2(p)+St(p) ]
There is considerable interdgt2—15 in the variation of

the parameter, which determines the total number of IS, +9(T only). (18

with density and from substance to substaritghe p de- ) ) )

s., then Eqs(14) and(15) give quantities that contribute to the pressure. Equatibd) is
hardly the most general possibility but it does include linear
1-pb ¢ dependence and arbitrapydependence of both the vibra-
a= In( v p ) (16)  tional energy and entropy, while the linear harmonic approxi-

mation has¢- and p-dependent entropies on[gliscussion
surrounding Eq.(14)]. Of course, a function ofl (which
includes a constanonly in a, does not influenc® or ¢(T).
With the Gaussian density of states, Ef8) constitutes the
Gaussian lineatGL) approximation.

Calculations in the GL approximation are straightforward.
f'I'he IS energy is

This is consistent with Stillinger’gl5] conclusion thaty(p)
has a logarithmic divergence psapproaches zero, thus pro-
viding some support for our assumption abex{p). On the
other hand, Stillinger has al§d4] observed thatv is inde-
pendent ofp for systems with inverse-power law repulsions
only, and at high density repulsive forces dominate even i
attractions are present. Equatid®) is not expected to hold
at high density. H(T)=
To summarize so far, the free energy evaluated on the
high-T plateau of the PEL yields an equation of state with
more complicated density dependence than the vdW equaibrational entropy influences the plateau IS energy, vibra-
tion, but the samd@ dependence. The extended vdW equa-tional energy influences thedependence. ThEdependence
tion also takes into account the deviation #T) from its  Of P is unchanged from the GLH approximation and
plateau value, measured loyp(T,p)=¢..(p) — &(T,p). In
the GLH approximation, wherdg(T) = 62/kgT, the result-

5;0%  (1+e)d®
ot ks | keT (19

1%

0 1 98
ing landscape pressure isp?[d(8%/2kgT)/dp]; the entire Peonsi=p’ ap (&, +(1+ ev)d)‘”):pz%’ (20
deviation ofA from its plateau value is proportional thp.
Adding the landscape pressure yields the extended vdW 9 9s.,
equation in the GLH approximation, Pi= —pZ%(sC,ersS%—si(ﬁx) = —ng, (21)
kBTp d 62
P(T.p)= ——a(p)pz—pz—( ) (17) g [(1+e})2s°
1-b(p)p dp \ 2kgT pm:—pz‘% z—kUB) (22
2. Beyond the GLH approximation ) .
) ) ] ] The corresponding GL extended vdW equation is
Simulation shows that the GLH expression f(T) is
only a crude representation; what is the source of the error? KeTp g [(1+eh)2s?
The Gaussian approximation, taken literally, has no upper or P(T,p)= B—_a(p)pZ_pZ_ —”)
lower bound on possible IS energies, but is a good represen- 1-b(p)p J 2kgT 23

tation for the contributing fluidlike states over a substantial
range ofT andp, and hag6,7,9] some theoretical justifica-
tion. More physically, the energy below whi& is negative
may be considerefb,7] a lower cutoff.

The harmonic approximation is valid for a particular nor- P e
mal coordm_ate Wher_1 the syster_n remains close to the I_S. This alp)=— —((1+ ei)¢m+ e‘v)): _ T (24)
suggests high density, where in fact the harmop(d) is ap dp
better, and deterioration a@sis decreased towards the coex-
istence region. Increasing anharmonicity with decreasingVith the introduction of a nontrivial vibrational free energy,
density may be seen directly via the increase of the numbea is expressed in terms of the total plateau energy, just as the
of imaginary frequency instantaneous normal mofis8,  total plateau entropy was previously seen to deterniine
which are completely anharmonic vibrational coordinatesAlong with the parameter definitions, the entire equation of
Their number is proportiondl16—19 to the self-diffusion state may be rewritten using only quantities which are well
coefficientD. defined with no reference to the GL approximation,

Equation (14) still holds for b, but, defining the total
energy/particle=¢+e,,
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kgTp dividing the coordinates into 8—N, approximately har-

P(T-P):m—c’i(ﬁ))f)2 monic coordinates andll, (u for unstabl¢ reaction path-
pIp ways. The energy remains finite for the latter, ad U

, 9 ksTdg2(T,p) —0 asT—>0<?. Characterizing théth reac_:tion pathway for

R de(T,p)— o) (25  plateau IS with extenf; and energy; , which will be some-

what less than the barrier height, and expanding the Boltz-

mann factor, the higf- limit for one basin is
wherede=d¢+de,.

Equation(25) is easily verified with Eqs(18) and (19), keT
and will be motivated shortly. It rests upon a particular aU(T—>°°):W (BN—=Ny)In(BAhwg) +NyIn(A(T)/£)
choice ofa, but suggests greater generality. And, a more
general treatment of anharmonicity is necessary to discuss 3N-N,
densities and temperatures whe$€T) is not described by + 2 IN(w;i/wo) (.,
i=1

Eqg. (19). In the GLH and GL approximations there is no
characteristic temperature at which the plateau is reached; N,
d¢(T) vanishes smoothly as T/ Simulation, however, _2 | ﬁ 1- Be 2
H H “ ” P n ( Bel) 1 ( 7)
shows[10] a characteristi¢20] “top of the landscape” tem- =1\ Lo
perature,T1o., at typical liquid densities, and only the final . .
approach to the plateau &t=Tro, obeys a IF law. Near ~ Where( is the length unit, and we have used &4). for the
the critical density, the T/ regime is nonexistent, or very 3N—N harmonic coordinates. The terms on the first line are

small. [Eqg.(18)] g(T), the part ofa, that does not contribute to the
We take the point of view that a complex, anharmaamjc ~ Pressure. _ _
is reflected in the behavior ofp(T,p). Determination of Expanding In(tBe¢) and decomposing the remainder of

&(T,p) by simulation is much easier than a comprehensiveEq. (27) into the forme,—Ts,,
theory ofa, . Thus, in light of Eq.(25), we seek an equation N

of state with vdW-likeP,,s; and Py terms determined by 1 2“ 3 Ny 28
the exact plateau energy and entropy, and a landscape pres- ] | €=2\3N) € (28)
sure, of arbitraryl dependence, determined by the drop from

the plateau. The drop is expressed throdg}h andds,, as ke [ Nu 3N-N,

well asd¢, but we further postulate that their most interest- S, w:—B{E In(€¢;/1€g)— > |n(wi/wo)(¢oo)}

ing behavior arises from their dependencedafn - ON[= '

It is necessary to characterize the plateau more carefully. (29)
The vibrational free energy is a function of boghand T.
The character of the relevant basins, on average, is det
mined by ¢; given the basins, the calculation ef—the
basin-constrained configurational integral—is fullydepen-
dent. A plateau free energy, then, must be defined in terms

; - . - _related to the high limit of the [16] fraction of imaginary-
the h_|gh-temper_ature I|m|.t for plateau-type bfasms. The firs requency instargtaneous norngl n%odes offering tﬁe prgspect
step is to establish the existence of a well-defined free energy.” mbinina INM and IS thermod nam’ics The vibrational
asT—x, g y .

For a given basin entropy has the harmonic part already discussed for the har-
9 monic coordinates, and a new contribution from the reaction
coordinates.
3N In(A(T))—In(f d{r}eBAU({r})”, While further .development of theS(_e ideas may lead to
detailed expressions fa,, the key point for now is that
(26) both e, and s, reach well defined high-temperature plateau
) ) values The temperature requirements are both tfAat
whereAU=U — Uis and A is the thermal _de Broglie wave- T so¢~d., (which is all that “plateau” meant pre-
'enqtlf)z’ expressing the role of the kinetic energy. SiAce \jq,sly), and thatkgT is greater than all the barrier heights,
T~ 7% In[A(T)] does not reach a high-plateau value but, 5 make the hight expansion in the configurational integral
since it is independent of density, it does not contribute t0 the) ;o the reaction coordinates. It would be pleasing -,
pressure. sufficed for both conditions, but that remains to be seen.

Escape from a basin occurs along “reaction pathways Accordingly, we rewrite the free energy
which lead to transition states. On the other hand, the poten- ’ ’

tial keeps increasing as the system moves away from the IS A(T p)/N=g(T)+[¢.+e, ..— T(Kgo(b)+S, )]
in a nonreactive direction. Taking the highdimit of the ’ '
configurational integral is complicated by the possibility of —[de(T)+de,(T)—kgTdp*(T)/25%]
finding very largeAU. The most important anharmonicity of B 2
the basins is, very simply, their finite extent. We suggest that FTLAS,(T) +ke( o~ b)dH(T.p)/ 57,
the principal features dod, at highT may be determined by (30

vr\fhere in Eq.(28) we indicate that the nontrivial plateau vi-
brational energy is determined by the plateau fraction of re-
action coordinated\,/3N times an averaged barrier height.
(We anticipate that fraction of reaction coordinates is closely

kgT

a,(T)=
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suppressing the dependence on the right-hand side; every-pecially at low temperature, and the linegaidependence has
thing excepg(T) andkg is density dependent. Equati¢80)  been verified4,5,1q in simulation for several systems and
has three distinct groups of terms, enclosed by square brackenditions.

ets. The first group is the plateau free energy, with constant

and linearT dependence, which yield3.,,s;and P inthe | SOME GENERAL PROPERTIES OF THE EXTENDED

GLH and GL approximations. Now that we have established VAN DER WAALS EQUATION

the existence of the plateau quite generally, we assert that the

exact, true plateau free energy yields a contribution to the On the plateau the pressure is described by the vdW-like
equation of state of fornPonsct TPy, given by Eqs(20)  P=TPr+Peonst, With density-dependena and b coeffi-
and(21). Considering the plateau only, the equation of statecients. In the Angell classification of liquids on a strong-
is a vdW equation with density-dependent coefficients, giverdragile scale[20-23, the more complex behavior of fragile
by Egs.(14) and (24). liquids is associated with a more pronounced ddaf(T)

The second group contains the effect of the dropeof from the plateau. Thus incorporatira(p) and b(p), and
=¢+e, from the plateau, plus thel¢? term in [, ignoring the Ian_dsqape pressure, may be a good apprpxima—
— (M) 12=[(po— ¢..) +d(T)]? which arises in evaluat- tion for strong liquids. We further suggest that tr_le (_)rdmary
ing the configurational entropy contribution, VAW equation should be most useful for strong liquids.
—kgTo(4(T)); it yields the landscape pressurg, in the
GLH and GL approximations. The current derivation shows
that the group may be identified without any approximation, Perhaps the most-discussed features of the vdW equation
yielding whateveiT dependence is given by the trdée and  are the loops in the isotherms below the critical temperature
de,. The proposed Eq25) is seen to correctly reproduce T.. They are a consequence of treating the fluid as homoge-
the first two groups in Eq(30). Thus our aim of including neous in the coexistence region. There is no provision for the
anharmonic, complea, through easily simulated quantities phase separation which yields the true, flat isotherms.
is realized. There are two simple scenarios for crossing the liquid-gas

The third group consists of the drop §f from the plateau coexistence curveT4(p), from above in the §,T) plane:
plus the cross term if( o — ¢..) + d(T))?, and vanishes in  the system may phase separate in thermal equilibrium, with
the GLH and GL approximations. This conclusion holdsflat isotherms, or it may remain a metastable, homogeneous
even if the GL coefficients are madedependentg) (T) and  fluid, with loops. Intermediate cases with incomplete phase
s,(T),i=1,2. It seems interesting that part of the drop in theseparation are also possible. Similarly, above the triple point
configurational entropy exactly cancels the drop in the vibradensity, cooling below the melting temperature may lead to
tional entropy, considerably simplifying the equation of state liquid-solid phase separation or a metastable supercooled lig-

We have no argument that the third group should vanishiid. One cannot assume that equilibrium is maintained, in
in general. Our most complete equation of state, subject onlgimulation or in the laboratory.

to the arguments about the existence of the plateau, is At a given density, there will exist IS representative of all
the possible thermodynamic states. Under the coexistence

1. Isotherms

kgTp curve, there will be both homogeneous fluid and phase-
P(T.p)= m—a(l))ﬂz separated liquid-gas and gas-solid IS. Above the triple point
pIp density the IS types will be homogeneous liquid, liquid-solid
J ke Tde2(T,p) phase separated, and crystal with varying amounts of disor-
—pza— de(T,p)— > der. Due to surface effects, phase-separated IS may be diffi-
P 26 cult to observe, and/or modified in character, in finite-

9 simulation. A PEL-based calculation in a metastable state is
+Tp?—[ds,(T,p) +Ka(po— ¢..)dd(T,p)/ 5°]. achieved by including only the IS to which the system is
P restricted, while equilibrium results from keeping all the IS.
(31 Phase separation causes a large dropp(T), i.e., a
strong increase id¢(T). On the other handj4(T) varies
Nonetheless, we propose H5) as a tractable approxima- more gently when the system remains homogeneous. Thus
tion. The essence of the extended vdW equation is an exattie landscape pressure in E85) behaves quite differently
treatment of the plateau free energy, plus the landscape prefr the two scenarios. We suggest that, consequently, the ex-
sure resulting from the drop from the plateau. Equat@®®)  tended vdW equation can give either loops or flat isotherms,
incorporates these features, and allows an arbiffadgpen- as appropriate for the degree of equilibration. Specifically,
dence for the drop. The GLH and GL approximations forthe landscape pressure is negligible for a homogeneous fluid,
d¢(T) can be quite poor, so it is important to incorporate thereproducing the vdW equation with(p) and b(p), and
true d(T). Even if the contribution of group three is non- loops. However, it is large if phase separation occurs, and
zero, it will not change the qualitative behavior of the land-contributes “antiloops” which cancel or partially cancel the
scape pressure too muchd§, resemblesi¢. vdW loops,leading to flat or flatter isothermdor complete
While finding the most comprehensive equation of state i©r partial equilibration, respectively.
the ultimate goal, the GLH is not to be scorned. At high To demonstrate this idea, assume ttiaf is either negli-
density the harmonic approximation makes good sense, egible or has the same qualitative behaviodasin Eq. (25)
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0.144 T

(1+e;)25°

k P
(9P/oT) =—2F 2
2kgT?

*“1-b(p)p " 9p

) (33
0.142

and thus, if the density derivative is negative and large
enough, there will be an anomaly. A more complicated con-
0.14 - - dition can be expressed with the trde(T) via Eq. (25).

There exists a clear physical interpretation of why the
extended vdW equation can have a density anomaly. One

0.138 : = expects that entropy should decrease with increasing density,
0.23 0.33 0.43 as the system becomes more congested and/or ordered, but
P this is only true on the high- plateau wheres is a maxi-

FIG. 1. Ordinary and extended vdW pressure vs density forNUM. In the GL approxmatlon, the. deV|at|or; é(T) ;rom
(T.—T)=0.015,a=4, b=1 (p.=1/3); all quantities in LJ units. the platea.u "’_It ConSt_am IS pr0port'0nal tos”. If &% de-
Outside the coexistence region the two pressures are identical, ifff€ases with increasing density, the system gets closer to the
side the flatter curve is the extended vdW equation with the illus/M@ximum plateau entropy, which may compensate for the
trative form ofd(T,p) from the text. decrease ir8.. itself, leading to ¢S/dp)1>0.

For the vdW equation the energy decreases with increas-
(recallde=d¢+de,). Let phase separation at a given  ing density; the relation(d(U/N)/dp)r=T(dP/JT),—P
and the corresponding strong growth d(T), begin at  Yields (9(U/N)/dp)y=—a, corresponding to the negative
Tig(p). For T<T,, the distance to the coexistence curve,€nergy of attraction. This is because repulsions enter via the
[Tig(p)—T1, is an increasing function of for p<p. and a entropy iny, i.e., there is no true positive repulsive energy
decreasing function forp>p.; the density derivative Ccontribution to the pressure, no matter how high the density.
changes from positive to negative@t_ If dp(T) is a mono- The situatiop is djfferent in the extended vdW equation,
tonic function of[T\4(p)—T], its derivative[ dd¢(T)/dp] however. Simulation(Sec. V) shows that {¢../dp)
will have the same behavior. Then the landscape pressure ffianges sign from negative to positive near the triple point,
Eq. (25) will be negative belowp, and positive above, i.e., Yielding a negativea(p) and a positive contribution to
the antiloop. (d(UIN)/dp)+ at high density, barring some unexpected con-

As an illustration only, consider the simple ansatztrary behavior bye, ... Then, the “vdW attractive” term
d¢(T,p)=c[T,g(p)—T]2, with T\, estimated from the ordi- transforms into a repulsive pressure. Taking the landscape
nary vdwW equation. We usg independena=4 andb=1  pressure into account, the GL approximation is
for an approximate description of the LJ fluid and ignore 1+eb)2s2
de,. All quantities are expressed in natural LJ units. The __ _ i (1+e)

. L : (9(UIN)/dp)r=—a(p)
landscape pressure is nonzero within the vdW coexistence ap kgT
curve only, so we assume it does not change the critical point "
from T,=1.185, p,=0.333. Figure 1 shows vdW and ex- and the landscape term also changes from positive to nega-

tended vdW isotherms &t=1.170 for the choices=1.91, Ve near the triple point. o _
52=1. We do not claim to have the corretts(T) but the The critical behavior of the heat capacity is descrifi25]
point is that any model in which its growth begins at thePY the exponents [different froma in Eq. (3] anda’,
coexistence curve will yield an antiloop and potentially a flat T T-T) *T>T

isotherm. On the other hand, if the fluid remains in a meta- (GU1T)p o % ¢

stable homogeneous phaskp has no relation td Tq(p)
—T], there are no antiloops, and the vdW loops remain.

) . (39

«(Te—T)", T<T..

In the vdW approximatior{25], a=a’=0. Since we are
obtaining P from the free energy the simplest consistent
There is considerable current interest in the phenomenorpute toU is also throughh; statistical mechanics yields the
of a positive ¢p/dT)p, the “density anomaly” well known exact relation

in water, which may or may not be associafed] with the

2. Some thermodynamic derivatives

existence of multiple critical points. Some textbook manipu- (U(T)IN)= ¢>(T)—T2( 8(av(T!¢)/T)> (35
lations show that equivalent conditions a#S(dp)+>0 or aT ¢(T)’
(aP14T),<0. o _
It is immediately apparent that the vdW equation cannotwhere the derivative acts on the expliditdependence of
have a density anomaly, since a, /T only, not on that which enters implicitly through(T).
For an equation of state based upon a particular approxima-
Kep tion to a,, use of that approximation, and the resulting
(&P/aT)le—bp>0 (van der Waalg (32) ¢(T), in Eq. (35) yields the corresponding potential energy.

Since the vdW equation is obtained by ignoring the devia-
However,[11] adding the landscape pressure in the GL ap+ions of ¢, e,, ands, from their plateau values, strorif
proximation, dependence ofJ(T), and even the mild harmonic TL/be-
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FIG. 2. Simulatedlto,(p) data(connected line segmeptand FIG. 3. Plateau energy.. (lower), shifted up by five energy
coexistence curve from Refi26], LJ units. units, and squared Gaussian widthvs reduced density, all in LJ

units.
havior, is discarded. That is why=a'=0; the critical
anomaly is in the anharmonic landscape term. yields Pynst (@(p))) and the landscape pressiRer .

We do not at the moment have the information necessary
to calculateb(p) from first principles. This coefficient in-
volves an extrapolation, i.e., in some small density range it

Here we present some preliminary results on LJ. A carefubppears that the pressure would diverge at a particular, higher
prior study of phase equilibrig26] determined that the criti- “close packed” density, but since the cores are soft that den-
cal point and triple point are.=0.31, T.=1.31, andp;  sity is never reached. Consequertilynay appear to be con-
=0.84, T;=0.75, LJ units. An estimate dfro (p), deter- stant at low density, but its-dependence becomes essential
mined from ¢(T), N=256, is shown in Fig. 2, along with at high density.
the coexistence curve from Rd26]. A minimum is found It is difficult to equilibrate the system at>1.2 without
near the triple point density, and with decreasing densitygoing to quite highl. To get some idea of the behavior lof
TroL(p) runs below the coexistence curve, touching it at thewe have calculated th&=25 isotherm, and thencb(p)
critical point. Note that the phase diagram in our system mayrom the GLH Equatior{17). The results are shown in Fig. 4.
differ slightly from that of Ref.[26], as they usedN Because of the soft cores, the quantity-b(p)p) can be-
=1372, so quantitative comparisons should not be ateome small, but never zero. Thus we suggest a plausible

IV. APPLICATION TO THE LENNARD-JONES LIQUID

tempted. behavior is exponential decay wigh giving
Earlier we discussed the liquid-gas coexistence tempera- T
ture T,y as marking the onset of a rapid risedg(T); Tq is b(p)=(1-e >)/p, (36)

a “TOL" temperature forequilibrium states. In a finite-size
simulation the metastable homogeneous phase can survi
until the spinodal is reached. We do not claim to have an
equilibrated simulation. and our r.esurl’,TOLsT_Ig . is ex- . P(T,p)=Tpe 3%+ p2(9.1519% — 13 7e14%)
pected. What may be interesting is that the liquid-gas spin-
odal and theTOL temperature discussed in supercooled lig- p 196 309
uids, found at densities above the minimum, are thus - ?(0-008419 -1 ), (37)
connected. Leyvraz and Kle[28] have suggested that prop-
erties of supercooled liquids may be influenced by a spinanticipating that the analog of the vdW attractive term will
odal. be positive, and the landscape term negative, at high density.

We have obtained?(p) and ¢..(p) (Fig. 3 for 2.0=p
=0.20,N=500, from the distribution of IS visited at high ' T '
where 6% becomesT independent, and fromp(T), respec-
tively. Starting at low density both quantities, liKerg,,
decrease to minimum values near the triple point, and then
begin to rise; the coefficiera(p) changes sign from positive a
to negative. Similar behavior has been obserf2@7] for
the IS pressure.

The higher the density the better we expect the harmonic
approximation to perform. Thus we are going to use our data
to evaluate the GLH equation of state over the entire avail-
able density range, but we do not make any claims of valid-
ity at low to intermediate density. Bo?(p) and¢..(p) are
well represented by a sum of two exponentials, particularly FIG. 4. High densityb coefficient from simulation and fit to Eq.
at high density, 2&p=1.2. Taking density derivatives (36), by=1.31. Noteb(p,=0.31)=1.08.

d the smooth curve in Fig. 4 is E6) with by=1.31.
ombining everything,

2
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S —T— T T the simplicity of the soft-sphere system, with4] density-
4 independent total number of Parameter), by combining

it with a vdW-like mean-field attraction, and a harmoanijg.
3F . The resulting PEL equation of state thus has the sdme
5 dependence as the GLH and GL approximations, but with
more explicit density dependence; thecoefficient (inter-
preting their results with the perspective of this papsrp
independent by construction. Various desirable properties are

—_
T
1

or \ demonstrated but, despite the presence of a vdW attraction,
-1 ' L ' L their focus is different from that presented herein.
0.1 0.3 0.5 0.7 0.9 In addition to the GLH and GL calculations, we have tried
p to include anharmonicity with as few assumptions akegut

as is possible; in Eq(25), anharmonicity is implicit in the
T-dependent inherent structure energy, and in the plateau en-
_ ergy and entropy. The extended equation can reproduce, and
_ Matching the[26] true pc and T, of LJ to the vdW equa-  qvide PEL interpretations of, thermodynamic phenomena
tion givesb=1.07 anda=4.73. At the critical density we ghqent from the usual vdW equation. If the system phase
find a(0.31)=4.92[negative of first parenthesis in EQ7)]  sgparates in thermal equilibrium below the coexistence
and [Eq. (36)] b(p)=1.08. Again, we expect the missing ¢rve, the landscape pressure will have vdw antiloops, fully
anharmonicity to be important at the critical density and re-,, partially canceling the vdW loops.
gard these results with some skepticism, but the agreement is Computer simulation in the LJ fluid yields the quantities
remarkable. The d.ensi.ty dependenceapblong with b, is Trou(p), d.(p), and 8%(p): they all have minima near the
shown forp=<0.90 in Fig. 5; note the sign change near theyinle point. Thea(p) coefficient becomes negative at
triple point density. =1.0, as the vdW attractive pressure turns repulsive. The
b(p) coefficient is represented by a simple expression stem-
V. DISCUSSION ming from the idea that the pressure may become exponen-

. . . . . _tially large, but not infinite. Since the harmonic approxima-
The equation of state is obtained from the density derlva;[ion is best suited for high density, the resulting analytic

tive of the Helmholtz free energy. The PEL approach pro- L ; : ;
vides a less traditional way to view the problem and generatGLH expression s suggested as a high density equation of

approximations. Since a Gaussian approximation for the | tate. Nevertheless, when evaluated at the critical density,
R ) . n re remarkably cl h values.
energy distribution is reasonable, the focus is on the vibra- (pc) andb(pc) are remarkably close to the accepted values

tional free energy, . The GLH approximation was worked

out[5] by La Naveet al, and the starting point of this paper ACKNOWLEDGMENTS

is simply the observation that their result resembles the van

der Waals equation with density-dependanand b coeffi- This work was supported by NSF Grant No. CHE-

cients, and an extra “landscape” term. 0090975. Discussions with F. H. Stillinger and F. Sciortino
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FIG. 5. a (upped andb coefficients vs density.
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